
LLM

I Know What You Said: Unveiling Hardware Cache
Side-Channels in Local Large Language Model Inference

Zibo Gao1,2, Junjie Hu1,2, Feng Guo1,2, Yixin Zhang1,2, Yinglong Han1,2, Siyuan Liu1,2,
Haiyang Li1,2, and Zhiqiang Lv1,2

1Institute of Information Engineering, Chinese Academy of Sciences.
2School of Cyber Security, University of Chinese Academy of Sciences.

Local LLM Deployment in Today’s Internet

Escalating privacy concerns are driving the adoption of local LLMs
Edge devices are increasingly efficient at running LLMs

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032
0.0 50.0 100.0 150.0

Size (USD Billion)

Y
ea

r

15.2

19.1

23.5

31.1

40.2

49.3

57.2

72.0

88.2

111.1

143.6

Manufacturing

Automotive

Government

IT & Telecom

Consumers & Goods

Healthcare

Other End-Use Industries

Mark size of on-device AI [1]

6 8 10 12 14
70

72

74

76

78

80

82

84

86

Gemma3-12B

Qwen3
30B-A3B

Qwen3-8B

Llama3-8B

GLM4-9B

Phi4-14B

20 22

SmallThinker
21B-A3B

Decoding Speed (tokens/s) - 8G Memory Limited

M
M

LU
 S

co
re

On-device LLM performance [2]
[1] J. Xu et al. On-Device Language Models: A Comprehensive Review. CoRR, 2024. [2] SmallThinker. Technical Report, SJTU IPADS, 2025. 2

https://arxiv.org/abs/2409.00088
https://github.com/SJTU-IPADS/SmallThinker/blob/main/smallthinker-technical-report.pdf

Local LLM (In)security

User Belief: Local LLMs appear private and secure

Reality: Hardware-level attacks bypass software/OS
protections

Research Gap: Prior LLM privacy works have not
yet studied the hardware-level cache side-channel
threats

Spy ApplicationVictim Application

Hello,...

LLM

LLM Inference
Systems

Hardware Platform

Cache Trace...

...

Hi,...
Hello,...

Hi,...

Research Question

Can adversaries reconstruct user prompts and LLM responses through hardware-level cache
side channels via co-located unprivileged malware?

3

Our Intuition

LLM’s fundamental operations create deterministic, observable cache access patterns

Finding 1: Token Value Leakage

Embedding layer acts as a lookup table

Cache access patterns reveal token
values

Embedding is typically offloaded to
CPU due to restricted GPU memory

𝑾‘ Could’ 6527

‘ you’ 366

‘ elebrate’ 19430

‘ on’ 373

‘ the’ 278

Input Token Index

366

364…
…

Output

Memory

CPU
Caches

… …

1

𝑬

366

𝑊366 ,1

𝑊366,1

3

2 4

4

Our Intuition

Finding 2: Token Position Leakage

Autoregression: Prompt and response tokens both go through embedding

Timing Signal: Response tokens unfold over multiple time steps

NN Blocks

Embedding Embedding

DecodingDecoding

['Every',' cloud',' has']

' silver' ' l'' a'
Prefill phase Decode phase

*NN=Neural Network

...

Embedding

Decoding

NN Blocks NN Blocks

...

Put them together

Unprivileged malware on the same device can reconstruct LLM prompt and response text via
observing CPU cache access patterns of the embedding layer

5

When Theory Meets Reality

Challenge 1

Cache side-channel noise corrupts the token reconstruction

The signal-to-noise ratio (SNR) is low: 100 valid tokens/s vs. 5× 106 noise events/s
when directly applying the standard Flush+Reload†

The hardware AoP prefetcher is the root cause

Even after overcoming the hardware prefetcher:

g C bage ertainly! Unable Here are several organigenic makeup brands that

are exit known

False Positive

False Negative

†Using Mastik v0.02 on Intel Raptor Lake 6

When Theory Meets Reality

Challenge 2

Input tokens appear in scrambled order from the cache perspective due to parallel prefill

Observed: comm with the Rugby regional work level ways at clubs In Union
national tosh does improve? the performance

Original: In what ways does the Rugby Union work with regional clubs to
improve performance at the national level?

7

Realizing the Attack: From Cache to Text

We address the aforementioned challenges via fine-tuning LLMs:

1 LLMA: Response Reconstruction

2 LLMB: Prompt Reconstruction

 Measuring
Cache Timing

 Identifying
Prefill and Decode

 Extracting Token List
and Timing Signal

 Reconstructing Victim's
LLM Input and Output Text

Victim
Application

8

Step 1: Obtaining Cache Trace

Use mmap() on the model file (exploiting the zero-copy model loaders and OS page cache)
Calculate embedding table row addresses via model file format
Overcome hardware prefetchers, especially the Array-of-Pointers (AoP) prefetcher
Probe cache trace via multi-thread Flush+Reload

125 150 175 200 225 250
Cache Trace

0

10

20

30

40

50

60

70

150

200

250

La
te

n
cy

Model File

Cache Probing
LLM Inference

Victim App Adversarial App (Unprivileged)

mmap

Memory Isolation

9

Step 2: Identifying Prefill and Decode

The prefill stage has higher cache hit “density” than the decode stages

Boundary

125 150 175 200 225 250

Time Steps

0

10

20

30

40

50

60

70
To

ke
n
 I
n
d
e
x

150

200

250

La
te

n
cy

Prefill Decode

10

Step 3: Extracting Token List and Timing Signal

Decode

Prefill

Detokenize
g Cbageertainly!!

AbHere are several

Detokenize
organice recommend

any Can several my

Inferred LLM Input

Inferred LLM Output

Nosiy

Timing SignalTime

Nosiy & Scrambled

11

Let’s Take a Deeper Look

Problem: Cache trace is noisy

Analysis: Characterize the trace during decoding using power spectral density (PSD)

Cache Hit Events

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time of Cache Hit Events (s)

True Positive False Positive

200.0 400.0

True Positive Freq (Hz)

0

25

P
S

D
 [

d
B

m
/H

z]

106 213 322 428

200.0 400.0

False Positive Freq (Hz)

0

25

We can differentiate between false positives and true positives!

12

Characterizing Noise in Cache Trace

To identify remaining false negatives, we excluded true positives by applying a PSD-based
first-order temporal difference, yielding:

0

1

2

Time Step k
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

To
ke

n

We found that false negatives (FN) and false positives (FP) are also predictable

Results are agnostic to hardware-specific decoding speed

Handling noise:

Reducing false positives ⇐⇒ Predicting and removing abnormal tokens near the valley

Reducing false negatives ⇐⇒ Predicting missing tokens near the peak

13

Reconstructing LLM Response

0

1

2

0 20 40 60 80

PSD-based Preprocess

(Groundtruth, TokenList, TimingSignal)Synthesize Training Set

Victim

Corpus
Simulate

True Positives

Simulate

False Positives

Simulate

False Negatives

Extract
Tokens

Extract
Timing

Finetune

Response

0

1

2

0 20 40 60 80

PSD-based Preprocess

Reconstructed

Synthetic Trace

Extract
Tokens

Extract
Timing

Cache Trace

Decode

14

Reconstructing LLM Prompt

Problem: Scrambled token positions in the prefill stage

Root Cause: Embedding operations run in parallel during prefill

Our Solution:

Leveraging contextual dependency between LLM prompt and response
Fusing prefill tokens

Preprocess

Prefill

Decode

Victim
Cache Trace

Prompt
Reconstructed

Extract
Tokens

Finetune

Synthesize Training Set

15

Experimental Setup

Real-world Deployment

Various Hardware:
▶ Intel i9 14th/13th Gen (Raptor Lake)
▶ Intel i7 12th Gen (Alder Lake)
▶ With (Without) NVIDIA RTX 3060 GPU

5 LLMs:
▶ Google Gemma2, Meta Llama3.1, TII Falcon3, Mistral, Microsoft Phi3.5

10 LLM Inference Frameworks:
▶ HuggingFace Transformers, LM Studio, Llama.cpp, etc.

Evaluation

Constructed Datasets:
▶ Sources: 5 LLM benchmark datasets (UltraChat, NQ-Open...)
▶ Total: 212, 535 prompt tokens after random sampling
▶ Partition: 60% training corpus, 20% validation, 20% testing, with data cleaning

16

Attack Performance Across Models

Highly accurate for response and prompt reconstruction
Largely agnostic to LLM type (tested on 5 model families)

Gemma2-9B Llama-3.1-8B Falcon3-10B Mistral-7B Phi-3.5-mini-3B
0

50

100

M
et

ric
 (%

) 97 98 98 95 9497 98 98 95 9495 97 98 94 9099 99 100 98 9999 99 100 98 100

R1
RL
LS
CosSim
ASR

Average Response Reconstruction Performance†

Gemma2-9B Llama-3.1-8B Falcon3-10B Mistral-7B Phi-3.5-mini-3B
0

50

100

M
et

ric
 (%

) 91 92 92 88 8788 89 88 83 8285 85 86 79 78
99 98 99 97 97100 100 100 100 100

R1
RL
LS
CosSim
ASR

Average Prompt Reconstruction Performance†

†Evaluated on llama.cpp with GPU acceleration 17

Generalization Across LLM Inference Frameworks

Succeeded on 10 popular LLM
inference frameworks†

No need to retrain the attacker model

The attack is fairly agnostic across
different LLM inference frameworks

Framework
Github
Stars‡

CPU GPU
ϕO ϕI ϕO ϕI

LM Studio N/A 96.6 97.0 97.4 97.3

HuggingFace
Transformers

138k 98.0 74.5 N/A N/A

Ollama 108k 92.0 95.7 99.7 96.1
llama.cpp 71k 99.5 95.2 99.2 97.8
GPT4All 71k 97.6 95.6 98.9 94.3
LocalAI 28k 99.1 97.6 99.0 96.4
Microsoft
BitNet

12k 96.1 76.0 98.3 74.5

PowerInfer 8k 98.0 96.5 98.5 96.2
Intel

IPEX-LLM
7k 88.6 93.8 96.6 96.1

koboldcpp 6k 97.6 94.9 99.1 95.5

‡Cut-off date: January 21, 2025†Validated on the microbenchmark with 20 random samples 18

Generalization Across Hardware

Hardware Agnostic: Succeeded on several hardware configurations (microbenchmark)

Intel
14900K

Intel
13900K

Intel
12700KF

0

50

100

M
et

ric
 (%

) 99 100 98100 100 100

CosSim
ASR

Restoring Response (CPU Victim)

Intel
14900K

Intel
13900K

Intel
12700KF

0

50

100

M
et

ric
 (%

) 96 95 97100 100 100

CosSim
ASR

Restoring Prompt (CPU Victim)

Intel
14900K

Intel
13900K

Intel
12700KF

0

50

100

M
et

ric
 (%

) 99 99 99100 100 100

CosSim
ASR

Restoring Response (GPU-Accelerated Victim)

Intel
14900K

Intel
13900K

Intel
12700KF

0

50

100

M
et

ric
 (%

) 96 98 97100 100 100

CosSim
ASR

Restoring Prompt (GPU-Accelerated Victim) 19

Attack Example

Observations:

Recovered unique n-grams: “freddy
krueger” and “e5”

Potential to leak PII (Personally
Identifiable Information)

Attacks on Prompts

ϕ : 100% R1: 100% LS: 100%

who played
:::::
freddy

:::::::
krueger in the 2010 night-

mare on elm street?
who played

:::::
freddy

:::::::
krueger in the 2010 night-

mare on elm street?
ϕ : 98% R1: 96% LS: 87%

How can I manage my weight and avoid gain-
ing excess body fat?

How can I manage my weight and avoid excess
body fat?
ϕ : 87% R1: 78% LS: 28%

what rank is an
::
e5 in the air force?

an
::
e5 in the air force is what rank?

20

Mitigation and Future Work

Hardware Mitigations

Cache partitioning (Intel CAT)
▶ However, CAT is typically unavailable

on consumer-grade CPUs

Software Mitigations

Disable zero-copy loading
▶ However, it incurs memory overhead

Role-based access control
▶ Requires OS support in practice

Attack Limitations

Cache side-channel is noisy

Requires shared memory

Future Work

Explore additional CPU side channels
(e.g., Prime+Probe)

Extend the attack to GPU side channels
(e.g., Invalidate+Reload) targeting GPU
token embedding

21

Key Takeaways

We present the first cache side-channel attack framework capable of successfully
recovering LLM prompts and responses

Our study demonstrates tangible threats to on-device LLM privacy

The mitigation calls for coordinated hardware/software methodologies

Privacy assurances should span the full system stack

Thank you for your attention!

Check our website for more details!

22

https://cassuto.github.io/LLM-cache-side-channel-attack/

	Introduction and Motivation
	Our Intuition
	Challenge
	Methodology
	Evaluation
	Mitigation and Future Work
	Conclusion

